索引于
  • 学术期刊数据库
  • 打开 J 门
  • Genamics 期刊搜索
  • 学术钥匙
  • 期刊目录
  • 中国知网(CNKI)
  • 引用因子
  • 西马戈
  • 乌尔里希的期刊目录
  • 电子期刊图书馆
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-WorldCat
  • SWB 在线目录
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
  • 米亚尔
  • 大学教育资助委员会
  • 日内瓦医学教育与研究基金会
  • 欧洲酒吧
  • 谷歌学术
分享此页面
期刊传单
Flyer image

抽象的

Age-Dependent Brain Tissue Hydration, Ca Exchange and their Dose- Dependent Ouabain Sensitivity

Sinerik Ayrapetyan, Armenuhi Heqimyan and Anna Nikoghosyan

Tissue hydration, dose-dependent 3H-ouabain binding, 45Ca2+ exchange in rat�s brain cortex, subcortex and cerebellum were studied in three age groups. Age-dependent tissue dehydration in all three zones of brain was due to inhibition of Na+/K+ pump. The age-dependence of cell hydration in cortex was more expressed. The curve of dose-dependent ouabain binding consists of three components corresponding to Na+/K+ pump isoforms (α1, α2, α3). Age-dependency of these isoforms was more expressed in cortex than in subcortex and cerebellum. High affinity receptors were depressed in old rats� brain tissues. Initial 45Ca2+ uptake in three brain zones of old rats was depressed as compared to that of young animals. Ouabain at 10-9 M has activation effect on 45Ca2+ uptake, which was also age dependent. Initial 45Ca2+ efflux in cortex and subcortex tissue in old rats was significantly depressed as compared to young ones while in cerebellum the opposite age-dependence was observed. The curves of dose-dependent ouabain effect on 45Ca2+ efflux and cell hydration consist of 6 components. However, close correlation between kinetics of 45Ca2+ efflux and cell hydration was not observed. It is suggested that brain tissue dehydration in aged animals is a consequence of Na+/K+ pump dysfunction induced intracellular calcium elevation. It is suggested that α3 receptors are functionally connected with intracellular Ca2+ buffering systems through intracellular signaling systems and their dysfunction in aged brain is a consequence of [Ca2+]i increase. Obtained data allow us to conclude that endogen nanomolar ouabain-like species circulating in mammals� blood removing Ca2+ from cells could have a beneficial effect on brain of old animals.