索引于
  • 学术期刊数据库
  • Genamics 期刊搜索
  • 学术钥匙
  • 期刊目录
  • 中国知网(CNKI)
  • 西马戈
  • 访问全球在线农业研究 (AGORA)
  • 电子期刊图书馆
  • 参考搜索
  • 研究期刊索引目录 (DRJI)
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-WorldCat
  • SWB 在线目录
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
  • 米亚尔
  • 大学教育资助委员会
  • 日内瓦医学教育与研究基金会
  • 欧洲酒吧
  • 谷歌学术
分享此页面
期刊传单
Flyer image

抽象的

Antifungal activity of aqueous and organic extracts from Withania somnifera L. against Fusarium oxysporum f. sp. radicis-lycopersici

Ahlem Nefzi, Rania Aydi Ben Abdallah, Hayfa Jabnoun-Khiareddine, Sined Medimagh-Saidana, Rabiaa Haouala and Mejda Daami-Remadi

The aim of this study was to evaluate the in vitro antifungal activity of aqueous and organic extracts from native Withania somnifera L. leaves, stems, and fruits against Fusarium oxysporum f. sp. radicis-lycopersici (FORL), the causal agent of Fusarium Crown and Root Rot disease in tomato. Aqueous and organic extracts (used at 1, 2, 3 and 4%) were added to molten Potato Dextrose Agar (PDA) medium. After pathogen challenge, cultures were incubated at 25°C for 5 days. All extracts tested, whatever the concentrations used, showed a strong antifungal activity toward targeted pathogen. FORL response to the different extracts assessed using the poisoned food technique, varied depending on plant organs, concentrations tested and organic solvent used for extraction. For aqueous extracts, fruit extract used at 2% exhibited the highest antifungal potential where FORL growth was decreased by 56.27%, relative to the untreated control, compared to 52 and 45.34% achieved using stem and leaf extracts at 3%, respectively. The highest antifungal activity of organic extracts was registred at the highest concentration used (4%). FORL was found to be more sensitive to fruit extracts than those from leaves and stems. Among the three organic extracts tested, butanolic fractions were the most active against FORL growth. The highest antifungal potential expressed by 62.03% decrease in pathogen radial growth was displayed by butanolic stem extracts applied at 4%. These results indicate that native W. somnifera plants may be exploited as potential source of allelochemicals biologically active against FORL.