抽象的

Biomechanical Behavior of Tooth-Supported Fixed Partial Prostheses Components with Two Different Infrastructures: Metal and Polyether Ether Ketone (Peek).

Santos Heloisa RB, Ávila Gisseli B, Carvalho Geraldo AP, Ramos Elimário V, Franco Aline BG, Franco Amanda G, Dias Sergio C

This study uses the finite element method to assess the biomechanical behavior of tooth-supported fixed partial prostheses components manufactured with two different infrastructures: Cr-Co Fit Flex metallic alloy and Polyether Ether Ketone (PEEK) subjected to physiological occlusal loads. Two models with equal geometry were simulated-Model M1: fixed partial prosthesis with Cr-Co metallic infrastructure and feldspar ceramics coating Noritake Ex-3; Model M2: fixed partial prosthesis with PEEK infrastructure PEEK and indirect resin coating Sinfony. They were subjected to axial and oblique loads. The 3D models were entered in the software CAD Solidworks 2016 for registry and analysis. Data were analyzed according to the studied factors: dentin behavior, infrastructure, aesthetic coating, detachment pressure between tooth and cement, and tensile stress of cement. Most stress peaks were observed in model M2, but values from the two models were close. Model M1 showed better results in four of the factors: dentin, infrastructure, detachment pressure between tooth and cement, and cement tensile stress. Model M2 showed better performance in terms of the aesthetic coating. Similar values for both models in most of the simulations suggest a long lifespan of both treatments, although longer for model M1.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证