索引于
  • 学术期刊数据库
  • Genamics 期刊搜索
  • 学术钥匙
  • 期刊目录
  • 中国知网(CNKI)
  • 西马戈
  • 访问全球在线农业研究 (AGORA)
  • 电子期刊图书馆
  • 参考搜索
  • 研究期刊索引目录 (DRJI)
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-WorldCat
  • SWB 在线目录
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
  • 米亚尔
  • 大学教育资助委员会
  • 日内瓦医学教育与研究基金会
  • 欧洲酒吧
  • 谷歌学术
分享此页面
期刊传单
Flyer image

抽象的

Cleavage of Methyl Ethers by O-Desmethylangolensin-Producing Clostridium Strain SY8519

Toshio Niwa, Shin-Ichiro Yokoyama, Yuika Kawada, Tohru Suzuki and Toshihiko Osawa

We previously isolated an O-desmethylangolensin (O-DMA)-producing bacterium, Clostridium rRNA cluster XIVa strain SY8519. We studied the metabolism of soy isoflavonoids by strain SY8519 and found that the bacterium attenuated the activity of isoflavonoids by “decomposition”. In this study, the O-methyl derivatives of isoflavones formononetin and biochanin A were fed to the bacterium. Formononetin and biochanin A were metabolized to O-DMA and 2-(4-hydroxyphenyl) propionic acid, respectively, which are the products of the original isoflavones. We could detect daidzein as an intermediate in the production of O-DMA from formononetin by time course analysis of the culture medium. Therefore, strain SY8519 can cleave the O-methyl ethers of isoflavones. We then examined the demethylation of O-methyl derivatives of gallic acid methyl ester by strain SY8519. The metabolite was almost 3-O-methylgallic acid methyl ester but not gallic acid ester. These results suggest that strain SY8519 also cleaves the O-methyl ethers of certain phenolic compounds by demethyl enzyme. We also compared the activities of the O-methyl derivatives of gallic acid methyl ester. As the number of the methyl ether decreased, the activities in tyrosinase inhibition and antioxidant assay increased. Therefore, compared with humans who have different microflora, humans who have strain SY8519 or who have similar microbial activity in their intestine would experience different effects after the intake of phytochemicals.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证