索引于
  • 学术期刊数据库
  • 打开 J 门
  • Genamics 期刊搜索
  • 期刊目录
  • 研究圣经
  • 乌尔里希的期刊目录
  • 电子期刊图书馆
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-WorldCat
  • 学者指导
  • SWB 在线目录
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
  • 米亚尔
  • 日内瓦医学教育与研究基金会
  • 欧洲酒吧
  • 谷歌学术
分享此页面
期刊传单
Flyer image

抽象的

Conceptual Aspects of Causal Networks in an Applied Context

Azam Yazdani, Akram Yazdani and Eric Boerwinkle

Making causal inference is conceptually straightforward in the setting of a randomized intervention, such as a clinical trial. However, in observational studies, which represent the majority of most large-scale epidemiologic studies, causal inference is complicated by confounding and lack of clear directionality underlying an observed association. In most large scale biomedical applications, causal inference is embodied in Directed Acyclic Graphs (DAG), which is an illustration of causal relationships (i.e., arrows) among the variables (i.e., nodes). A key concept for making causal inference in the context of observational studies is the assignment mechanism, whereby some individuals are treated and some are not. This perspective provides a structure for thinking about causal networks in the context of the assignment mechanism (AM). Estimation of effect sizes of the observed directed relationships is presented and discussed.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证