索引于
  • 打开 J 门
  • Genamics 期刊搜索
  • 学术钥匙
  • 期刊目录
  • 研究圣经
  • 中国知网(CNKI)
  • 西马戈
  • 乌尔里希的期刊目录
  • 电子期刊图书馆
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-WorldCat
  • SWB 在线目录
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
  • 米亚尔
  • 科学索引服务 (SIS)
  • 欧洲酒吧
  • 谷歌学术
分享此页面
期刊传单
Flyer image

抽象的

Effect of Inorganic Phosphate and Low pH on the Force-Velocity Relation of Single Skinned Skeletal Muscle Fibers Studied by Applying Parabolic Fiber Length Changes

Ohno T, Arao T, Chaen S and Haruo Sugi

Although force-velocity (P-V) relation is important to obtain insights into kinetics of actin-myosin interaction in muscle, determination of P-V relation in skinned muscle fibers are difficult mainly due to gradual deterioration at the two cut fiber ends, which makes it impossible to obtain enough data points to construct P-V curve over the whole range of forces. In addition, determination of the maximum shortening velocity Vmax by back extrapolation of limited data points to velocity axis is ambiguous because of the steep force versus velocity relation. To overcome these difficulties, we developed a novel method to obtain continuous P-V curves over the whole range of forces from 0 to the maximum isometric force Po, by applying length changes, with time course L=-kt2, to Ca2+-activated skinned fibers, so that time derivative of length change, i.e. shortening velocity V=-dL/dt=-2kt; namely, V increased linearly with time t. By recording the resulting chane in force P, we could obtain continuous P-V curve in one shot. Using the above method, we examined effect of high inorganic phosphate (Pi) concentration and low pH (6.5) on P-V relation of skinned rabbit psoas muscle fibers at 20°C and at 5°C with the following results: (1) The P-V curves obtained exhibited a distinct hump at high force region >0.5-0.6Po. The P-V curves, deviated from rectangular hyperbola with forces > ~0.2Po, did not change their shape appreciably by Pi and low pH.; (2) Pi (30 mM) reduced Po by ~30% at 20°C and ~45% at 5°C; (3) Low pH (6.5) showed no significant effect on Vmax at both 20 and 5°C; and (4) Pi (30 mM) at low pH (6.5) reduced Po by ~43% at 20°C and ~45% at 5°C. These results are discussed in relation of other published results.