索引于
  • 打开 J 门
  • Genamics 期刊搜索
  • 学术钥匙
  • 期刊目录
  • 全球影响因子 (GIF)
  • 中国知网(CNKI)
  • 乌尔里希的期刊目录
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-WorldCat
  • 普布隆斯
  • 日内瓦医学教育与研究基金会
  • 欧洲酒吧
  • 谷歌学术
分享此页面
期刊传单
Flyer image

抽象的

Effects of Intracellular Process on the Therapeutic Activation of Nanomedicine

Wei Li, Fulei Zhang, Mengxin Zhao, Xiandi Zhu, Cheng Jiang, Changhong Ke, Ge Zhang, He Zhao, Yun Sun, Di Chen, Sufen Li, Wei Dong, Shangjing Guo and Hui Liu

In this article, we review the endocytosis ways of nanoscale materials and how they work. Surrounded by FBS in culture medium, the special nanomedicines, entering into lysosome via endosome or autophagosome, are degraded by many kinds of enzymes, and are finally snagged. During this process, they are interacting with lysosome membrane, hence the lysosome membrane changes in permeation. With a weak damage extent of lysosome, the nanoparticles escape the damage effect of lysosome, and interact with other organelles (for example mitochondria, proteins), resulting in their defeature and being swallowed by autophagosomes. Now that lysosomes are damaged, the autophagosomes won’t be digested by lysosomes. With accumulation of endosomes, the cancer cells accelerate the aging process or apoptosis. If lysosomes are strongly destabilized, the cathepsin B/D will interact with caspase family, causing necrosis or apoptosis of cancer cells. So we recognise that the lysosome is key for cancer cell death.