索引于
  • 打开 J 门
  • Genamics 期刊搜索
  • 学术钥匙
  • 期刊目录
  • 中国知网(CNKI)
  • 乌尔里希的期刊目录
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • 期刊摘要索引目录
  • OCLC-WorldCat
  • 普布隆斯
  • 日内瓦医学教育与研究基金会
  • 欧洲酒吧
  • 谷歌学术
分享此页面
期刊传单
Flyer image

抽象的

Functional Nerve-Vascular Reconstitution of the Bladder-Wall; Application of Patch Transplantation of Skeletal Muscle-Derived Multipotent Stem Cell Sheet-Pellets

Shuichi Soeda, Tetsuro Tamaki, Hiroyuki Hashimoto, Kosuke Saito, Akihiro Sakai, Nobuyuki Nakajima, Kenei Nakazato, Maki Masuda and Toshiro Terachi

A three-dimensional gel-patch-like nerve-vascular reconstitution system using the Skeletal Muscle-Derived Multipotent Stem Cell (Sk-MSC) sheet-pellet was applied to the reconstitution of the severely damaged bladder wall as a non-skeletal muscle tissue, but has high demand for function. The Sk-MSC sheet-pellet was prepared by the mild detachment of expanded/confluent cells in culture with EDTA, then, collected in a tube and centrifuged. The sheetpellet was pasted on the open thin-walled region of the damaged bladder wall made by myotomy (remove one-third of serosal smooth muscle layer associate with large disruptions of nerve-blood vessel networks retaining the mucosal layer). At 4 wk after transplantation, significant prevention of the reduction in the passive wall-tension, and the positive wall-contraction via electrical stimulation was observed in the transplanted group. Supporting these functional results, immunohistochemical and immunoelectron microscopic analysis revealed that the engrafted cells actively contributed to the reconstitution of blood vessels and peripheral nerves with differentiation into pericytes, endothelial cells, and Schwann cells. However, skeletal and smooth muscle formation was not observed. Thus, this method is potentially useful for the reconstitution of nerve-vascular networks in the bladder-wall to be retaining function such as passive tension and contractile function.