索引于
  • 打开 J 门
  • Genamics 期刊搜索
  • 学术钥匙
  • 期刊目录
  • 研究圣经
  • 中国知网(CNKI)
  • 西马戈
  • 乌尔里希的期刊目录
  • 电子期刊图书馆
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-WorldCat
  • SWB 在线目录
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
  • 米亚尔
  • 科学索引服务 (SIS)
  • 欧洲酒吧
  • 谷歌学术
分享此页面
期刊传单
Flyer image

抽象的

Gene Silencing by siRNA Nanoparticles Synthesized via Sonochemical Method

Shimanovich U, Munder A, Loureiro A, Azoia NG, Gomes A, Cavaco-Paulo A, Gedanken A and Gruzman A

The knowledge that small RNAs can affect gene expression has had a tremendous impact on basic and applied research, and gene silencing is currently one of the most promising new approaches for disease therapy. However, RNAs cannot easily penetrate cell membranes, therefore RNA delivery become one of the major challenges for gene silencing technology. In the current paper we discuss a general approach for converting siRNA molecules into a dense siRNA nanoparticles using environmentally friendly sonochemical method. The RNA nanoparticulation enhance its gene-silencing activity in vascular bovine endothelial as well as in cancer 293T/GFP-Puro cell lines without causing any toxic effect. We show that ultrasonic waves do not lead to RNA degradation or any changes in its chemical structure. Moreover, sonochemically produced siRNA nanoparticles have been shown to be resistant to a variety of environmental stresses including pH levels, enzymes and temperatures, hence solving problem of the short half-life of the RNA molecules. As the siRNA nanoparticles are biocompatibile and biodegradabile, and their RNA release properties may be controlled within limits, sonochemical formation of siRNA nanoparticles represent a new promising approach for generation of functional bionano materials.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证