索引于
  • 学术期刊数据库
  • Genamics 期刊搜索
  • 学术钥匙
  • 期刊目录
  • 中国知网(CNKI)
  • 西马戈
  • 访问全球在线农业研究 (AGORA)
  • 电子期刊图书馆
  • 参考搜索
  • 研究期刊索引目录 (DRJI)
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-WorldCat
  • SWB 在线目录
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
  • 米亚尔
  • 大学教育资助委员会
  • 日内瓦医学教育与研究基金会
  • 欧洲酒吧
  • 谷歌学术
分享此页面
期刊传单
Flyer image

抽象的

Identification of Trichoderma spp. by DNA Barcode and Screening for Cellulolytic Activity

Abdelmegid I Fahmi, Ragaa A Eissa, Khalil A El-Halfawi, Hanafy A Hamza and Mahmoud S Helwa

Species identification of isolates of Trichoderma from different locations of Nile delta of Egypt was performed and their cellulolytic activities were analyzed. On the basis of morphological characteristics, 75% of isolates were identified to species level and they were divided into four aggregate groups. Morphological characterization alone was insufficient to precisely identify Trichoderma species because they have relatively few morphological characters and limited variation that cause overlapping and misidentification of the isolates. Therefore, there was a necessity to use a molecular technique to compensate for the limitations of morphological characterization. The DNA sequencing of the 5.8S-ITS region was carried out using specific primers ITS1 and ITS4. By comparing the sequences of the 5.8S-ITS region to the sequences deposited in GenBank using BLAST program all isolates can be identified to species level with homology percentage of at least 99%. In addition, TrichOKEY search tool was used to assess the reliability of Genbank and results were in 92% agreement with the BLAST results. Data indicated a narrow species diversity and there were two main species predominated namely; T. longibarchiatum and T. harzianum. Distribution of nucleotides, as well as the (G+C) content in ITS region of isolates, indicated a wide range of interspecies variation. Finally, isolates were assessed for their total cellulase activities using a cellulose-azure method, for exoglucanases activity using Avicel method and for endoglucanases activity using carboxymethyl cellulose (CMC) and acid swollen cellulose methods. Consequently, eleven isolates were selected to be the best isolates among the 28 isolates used for cellulolytic ability.