索引于
  • 打开 J 门
  • Genamics 期刊搜索
  • 学术钥匙
  • 期刊目录
  • 中国知网(CNKI)
  • 乌尔里希的期刊目录
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • 期刊摘要索引目录
  • OCLC-WorldCat
  • 普布隆斯
  • 日内瓦医学教育与研究基金会
  • 欧洲酒吧
  • 谷歌学术
分享此页面
期刊传单
Flyer image

抽象的

Influence of Demethylation Pathway on the Differentiation Potential of Human Mesenchymal Stem Cells

Faisal Ali, Yazan Ranneh, Amin Ismail and Bart vaes

Osteoporosis is associated with a decrease in the commitment of Mesenchymal stem cells (MSC) to the bone forming osteoblast lineage and an increase in the commitment to the fat forming adipocyte lineage in bone marrow of elderly persons. A link between methylation pathway and MSC differentiation remains unclear. Therefore, we hypothesize that alterations in the commitment and differentiation potential of MSC during osteoporosis may be mediated by modification of global methylation pathway. To examine the role of methylation pathway on the differentiation potential of MSC into osteoblasts or adipocytes, human MSC, were used. Adox, which mimics hyperhomocysteinemia effect, was added to cells as a potent methylation inhibitor to block the global methylation pathway of DNA, RNA, Lipid and protein. The effect of demethylation on osteoblast differentiation was determined by measuring the alkaline phosphates activity and the degree of calcification. While, adipocyte differentiation was determined by Oil-red O staining and triglyceride content. It was clearly observed that demethylation reduces alkaline phosphates activity, calcification and thereby, osteoblast differentiation. In contrast, adipocyte differentiation was stimulated by demethylation. The results of this study suggest that demethylation changes the differentiation potential of MSC for more adipogenic and less osteogenic.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证