索引于
  • 打开 J 门
  • Genamics 期刊搜索
  • 乌尔里希的期刊目录
  • 参考搜索
  • 研究期刊索引目录 (DRJI)
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-WorldCat
  • 普罗奎斯特传票
  • 学者指导
  • 普布隆斯
  • 日内瓦医学教育与研究基金会
  • 欧洲酒吧
  • 谷歌学术
分享此页面
期刊传单
Flyer image

抽象的

Insight in to the Initial Stages of Silica Scaling Employing a Scanning Electron and Atomic Force Microscopy Approach

Bogdan C Donose, Greg Birkett and Steven Pratt

The performance of reverse osmosis (RO) desalination can be limited by membrane scaling. Of particular concern is silica scale, which once deposited on the membrane is extremely difficult to remove. In this work, the deposition of silica-rich nanoparticles was considered. A novel in situ sample preparation method was developed for a microscopy investigation into the deposition and adhesion of the silica-rich nanoparticles. The method involves placing a clean silica wafer in agitated brine to collect particles to simulate initial stages of scaling. The ‘scaled’ surfaces were characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Model brines, with varying nanoparticle, cation, and organic composition and concentration were tested, as well as reject brine from a full-scale operational water treatment facility. Microscopy revealed that silica-rich nanoparticles were deposited from all waters, with smaller nanoparticles more readily attaching to the wafer compared to larger ones. The presence of organics increased nanoparticle adhesion whereas divalent cations (Ca2+ and Mg2+) decreased nanoparticle adhesion. These results have implications for the evaluation, selection and operation of RO pre-treatment processes and chemical dosing strategies, particularly the requirement for weak acid cation ion exchange (WAC-IX) and anti-scalant chemicals, respectively.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证