索引于
  • 打开 J 门
  • Genamics 期刊搜索
  • 学术钥匙
  • 期刊目录
  • 中国知网(CNKI)
  • 乌尔里希的期刊目录
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • 期刊摘要索引目录
  • OCLC-WorldCat
  • 普布隆斯
  • 日内瓦医学教育与研究基金会
  • 欧洲酒吧
  • 谷歌学术
分享此页面
期刊传单
Flyer image

抽象的

“Mix of Mics”- Phenotypic and Biological Heterogeneity of “Multipotent” Muscle Interstitial Cells (MICs)

Barbora Malecova and Pier Lorenzo Puri

The capacity of adult skeletal muscle for regeneration appears to be limited, with progressive impairment in repair efficiency of injured muscles observed in chronic muscular disorders and during aging. While satellite cells, the committed adult muscle stem cells, are the main direct cell source supporting the regenerative potential of adult skeletal muscles, the characterization of the cell types and signals that constitute the functional “niche” of satellite cells is currently the object of intense investigation. Recent studies have identified a functional relationship between satellite cells and various cell types located in key anatomical position, such as the interstitium of skeletal muscles. This heterogeneous population of muscle interstitial cells (MICs) appears to retain an intrinsic multipotency within the mesodermal lineage, and their direct or indirect contribution to myofiber turnover, repair and degeneration has been suggested by many studies that will be reviewed here. Given the existing gap of knowledge on lineage identity and functional properties of MICs, their detailed characterization at the single cell level holds the promise to provide key insight into the composition of this heterogeneous population and the dynamic transition through distinct sub-populations in healthy, diseased and aging muscles. This review provides an overview of the results of various studies describing the phenotype and the function of cells isolated from skeletal muscle interstitium, and discusses the importance of single cell transcription profiling in order to decipher the functional and phenotypical heterogeneity of muscle interstitial cells (MICs).

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证