索引于
  • 打开 J 门
  • Genamics 期刊搜索
  • 学术钥匙
  • 期刊目录
  • 研究圣经
  • 中国知网(CNKI)
  • 西马戈
  • 乌尔里希的期刊目录
  • 电子期刊图书馆
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-WorldCat
  • SWB 在线目录
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
  • 米亚尔
  • 科学索引服务 (SIS)
  • 欧洲酒吧
  • 谷歌学术
分享此页面
期刊传单
Flyer image

抽象的

Nano-Volume Well Array Chip for Large-Scale Propagation and High-Resolution Analysis of Individual Cancer Stem Cells

Jenifer Clausell-Tormos, Maria M. Azevedo, Irene Miranda-Lorenzo, Catarina R. Vieira, Yolanda Sanchez-Ripoll, Diego Megias and Christopher Heeschen

Cellular heterogeneity represents an increasingly appreciated aspect for research in life science. To address this issue, we have developed a nano-volume well array chip that allows larger-scale isolation and propagation of single cells. Notably, the chip enables single-cell analysis of freshly isolated primary cells at a high-resolution. With an average height of 130 ± 10 μm and an average diameter of 80 ± 10 μm, each nano-volume well can hold up to 0.4 nL of volume, and is compatible with both adherent as well as 3D suspension cultures. Simultaneous time-lapse imaging of thousands of nano-volume wells allows to monitor cell division, as well as tracking of cell fate, and/or alterations in the microscopic cellular morphology and/or markers expression. To demonstrate its application, we employed the system for propagating and tracking of Cancer Stem Cells (CSCs). CSCs could be monitored over three consecutive days by time-lapse high-resolution imaging at the single-cell level. We could demonstrate that non-CSCs do not dedifferentiate into CSCs, while CSCs were able to give rise to both CSCs and non-CSCs by undergoing symmetric and asymmetric division, respectively. Altogether, we have developed a novel nano-volume well array chip that significantly ameliorates clonal propagation and high-resolution image analysis of rare cells.