索引于
  • 在线访问环境研究 (OARE)
  • 打开 J 门
  • Genamics 期刊搜索
  • 期刊目录
  • 西马戈
  • 乌尔里希的期刊目录
  • 访问全球在线农业研究 (AGORA)
  • 电子期刊图书馆
  • 国际农业与生物科学中心 (CABI)
  • 参考搜索
  • 研究期刊索引目录 (DRJI)
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-WorldCat
  • 学者指导
  • SWB 在线目录
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
  • 米亚尔
  • 大学教育资助委员会
  • 欧洲酒吧
  • 谷歌学术
分享此页面
期刊传单
Flyer image

抽象的

pH Characterization of Digestive Enzyme and In vitro Digestibility of Red Bee Shrimp Caridina cantonensis (Decapoda: Atyidae)

Supalug Kattakdad, Orapint Jintasataporn, Wanchai Worawattanamateekul and Srinoy Chumkam

The characteristics of digestive enzyme from red bee shrimp (Caridina Cantonensis), a tiny ornamental shrimp, were investigated under various pH ranging from 2 to 12. The aim of this study was to find out the specific activities of protease, amylase, lipase, cellulose, trypsin and chymotrypsin and in vitro raw materials by shrimp enzyme digestibility. Fifteen and sixty-day old shrimp were obtained from private farms in Bangkok, Thailand. Protease, lipase, amylase, cellulase, trypsin and chymotrypsin specific activity were determined. The results showed that protease activity had its optimal activity at pH ranging from 8 to 10 and showed the highest activity at pH 10 in both age groups. The alkaline amylase activities were found to be significantly higher than acidic amylase in both age groups. Both acidic and alkaline amylase activity of the 15-day old shrimp was significantly lower than the larger shrimp. The Lipase activity in the 60-day old shrimp showed the highest activity at pH 12, pH 10 and 11, respectively. In the 15-day old shrimp, the lipase activity was stable over a broad pH ranging from 2-12. In the 60-day old shrimp, the cellulase activity showed the highest activity at assay condition pH 7 and decreased when pH levels increased. In the 15-day old shrimp, cellulase activity showed optimal pH at pH 8 and 11. The trypsin and chymotrypsin activity at neutral to weak alkaline condition was greater under acidic condition in both age groups. The activity of 15-day old shrimp was significantly lower than the older shrimp. Regarding in vitro digestibility, the study on protein digestion showed that fish meal was suitable to be a protein source for red bee shrimp. The carbohydrate digestibility showed that wheat flour and maltodextrin were more appropriate as a carbohydrate source for red bee shrimp than cassava, rice bran and Na-alginate. Therefore, it can be concluded that red bee shrimp had diet digestibility in neutral to mid alkaline condition. The animal protein materials are appropriate to be red bee shrimp feed ingredients with low fiber and carbohydrate source.