索引于
  • 打开 J 门
  • Genamics 期刊搜索
  • 学术钥匙
  • 期刊目录
  • 研究圣经
  • 中国知网(CNKI)
  • 西马戈
  • 乌尔里希的期刊目录
  • 电子期刊图书馆
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-WorldCat
  • SWB 在线目录
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
  • 米亚尔
  • 科学索引服务 (SIS)
  • 欧洲酒吧
  • 谷歌学术
分享此页面
期刊传单
Flyer image

抽象的

Rifampicin-loaded Silver-starch Nanocomposite for the Treatment of Multi-resistant Tuberculosis

Isimi Christianah, Asha Rodrigues, Okafor Ijeoma, Okoh Judith, Aboh Mercy and Emeje Ma rtins Ochubiojo

Extraction, purification and synthesis of acetylated cassava starch was undertaken. The degree of modification for the acetylated (modified) starch was calculated to be 0.03. Physicochemical indices interrogated were all significantly (P<0.05) affected by the acetylation. Microstructural studies revealed starches that were predominantly polygonal in shape. The FTIR results confirmed introduction of an acetyl group with a new band at 1728 cm-1. The results further show that, the modification did not degrade the granule morphology, but x-ray pattern showed increased crystallinity in the acetylated derivative. Thermogravimetric analysis and differential scanning calorimetry revealed 2 phase decomposition of both starches and improved gelation capacity with new peaks respectively. Rifampicin (RIF) loaded starch-stabilized silver nanoparticles yielded good mean particle size (248 nm), polydispersity index (0.276) and zeta potential (18.68 mV). There was a significant (P<0.01) sustained release of RIF from the nano formulations up to 14.0 h. Antimicrobial susceptibility tests show that, the nano formulation exhibited good antimicrobial activity. It is therefore concluded that, acetylated cassava starch could be a good stabilizer and vehicle for drug delivery.