索引于
  • 打开 J 门
  • Genamics 期刊搜索
  • 期刊目录
  • 中国知网(CNKI)
  • 电子期刊图书馆
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-WorldCat
  • SWB 在线目录
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
  • 米亚尔
  • 欧洲酒吧
  • 谷歌学术
分享此页面
期刊传单
Flyer image

抽象的

Slurry Phase Hydrocracking of Residue by Phosphomolybdic and Phosphotungstic Acids

Prajapati R*, Kohli K, Maity SK and Garg MO

Slurry phase hydrocracking of vacuum residue was studied on heteropoly acids and on super acid. In this regards, heteropoly acid of phosphomolybdic, phosphotungstic and superacid of molybdenum-antimony fluoride were used. Deep hydrocracking of residue was noticed even at moderate operating conditions for all acidic catalysts. Due to higher hydrogenating functionality of tungsten, the HDM activity of the phosphotungstic acid is higher than that of molybdenum containing acids. Even the residue hydrocracking activity of former catalyst is also high. It is also noticed from sulphur distribution of liquid product that thiophenic sulphur compounds are formed due to C-S bond cleavage at branching of condensed aromatic rings. Moreover, phosphotungstic acid gives high percentage of aromatic products whereas the considerable amount of saturate hydrocarbons is produced by phosphomolybdic acid. The coke produced by phosphotungstic acid catalyst is hard in nature indicating that extensive polymerization reaction occurs at reaction conditions. Higher H/C ratio indicates the deep hydrogenation of liquid products in presence of super acids. Instead of use superacid, tungsten based heteropoly acid can be effectively used for hydrocracking of residue.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证