索引于
  • 打开 J 门
  • Genamics 期刊搜索
  • 学术钥匙
  • 期刊目录
  • 中国知网(CNKI)
  • 乌尔里希的期刊目录
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • 期刊摘要索引目录
  • OCLC-WorldCat
  • 普布隆斯
  • 日内瓦医学教育与研究基金会
  • 欧洲酒吧
  • 谷歌学术
分享此页面
期刊传单
Flyer image

抽象的

Successful Mitigation of Radiation Injuries in Mice using Mesenchymal Stem Cells Genetically Modified to Secrete Extracellular Superoxide Dismutase

Weiwen Deng, Aly S. Abdel-Mageed, Robert H. Connors, Daniel W. Pietryga, Anthony J. Senagore, Troy A Giambernardi and Rick V. Hay

Oxidative stress is a major determinant for radiation-induced tissue injuries. We present a novel method that harnesses the power of migration of mesenchymal stem cells (MSCs) to radiation injured tissues and adenovirusmediated extracellular superoxide dismutase (ECSOD) gene therapy for oxidative stress. This report demonstrates for the first time that intravenous administration of MSCs genetically modified to secrete ECSOD at 24 hours after radiation exposure can improve survival from 10% to 52%, extend lifespan for 207 days, retard cataract formation for 39 days, and prevent carcinogenesis in mice. For proof-of-concept, we further demonstrate for the first time that human MSCs can be genetically modified with adenoviral vector to secrete high levels of biologically active ECSOD. Our findings suggest that mesenchymal stem cell-based antioxidant gene therapy has the potential for mitigation of radiation injuries in humans as a consequence of radiological and nuclear emergencies, space radiation exposure, and cancer radiotherapy toxicity.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证