沙尔吉尔·艾哈迈德
介绍:
寻找新的太阳能转换技术材料非常重要,这将有助于我们为下一代节约能源。利用三重态三重态湮没上转换 (TTA UC) 的理念需要一种智能混合材料来克服所需的距离,以实现平稳高效的三重态能量转移 (TEnT)。然而,TTA UC 过程是最好的波长偏移方法之一,其中两个具有高波长的低能光子 (hu1) 被吸收并通过 Dexter 型能量转移机制转化为一个具有低波长的高能光子 (hu2)。在我们之前的演示中,我们报告了在乙腈溶液中通过制作固液界面和表面改性,在 PtOEP(PtOEP = Pt(II) 八乙基卟啉)作为敏化剂和 Zn-苝 SURMOF 作为受体之间的三重态能量转移[5]。在这里,我们将提出一种利用固-固界面的新想法,通过制作 SURMOF-SURMOF 异质结来研究 TTA UC。
为了满足当代对太阳能的需求,人们使用各种材料对 TTA UC 进行了研究。此外,人们在气体分离、电子、二氧化碳还原、水分解、光伏等领域也做出了显著努力,最近又在 TTA-UC 系统中采用了现代表面锚定金属有机骨架 (SURMOFs) 材料,因为其具有可控的生长方向、可调节的孔径和最高的结晶度。此外,先前的研究表明,溶解在溶液中的光敏剂的随机取向也会阻碍光电化学电池中三线态能量的转移。
实验策略:
基材制备
将石英玻璃/FTO 玻璃(SOLARONIX,瑞士)基板在丙酮中放入超声波槽中清洗约十分钟,然后在 O2 下用等离子体处理近三十分钟,以产生具有 -OH(羟基)的表面。这些清洁后的基板立即用于生长 SURMOF。
锌-苝 SURMOF 的制备
Liquid phase epitaxy technique is used for the preparation of the Zn-Perylene SURMOFs on top of FTO /Quartz Glass substrates. We prepared a concentration zinc acetate ethanolic solution (1 mM). On top of cleaned FTO we sprayed it for 5s. After 30s wait, 3,9 perylene dicarboxylic acid ethanolic solution was sprayed ( concentration:20-40M; spray time: 20 s, waiting time: 30 s). This alternate spray process of Zn-acetate as metal linker and 3,9 perylene dicarboxylic acid as organic linker supported the formation of highly crystalline metal organic framework thin film and more detail can be found somewhere in the literature.
Preparation of Zn-porphyrin SURMOF and Its Heterojunction
SURMOF of Zn (II) metalloporphyrin were fabricated using well established highly throughput automated spray system Briefly, a concentration of 20 mM Zn(II)metalloporphyrins in ethanol (spray time: 25s, waiting time: 35s) and a concentration of 1 mM zinc acetate in ethanol (spray time: 15 s, waiting time: 35 s) were one by one sprayed onto the FTO / Quartz Glass substrates in a layer-by-layer fashion using N2 as a carrier gas (0.2 mbar). In between, pure ethanol was used for rinsing to get rid of the unreacted species from the surface (rinsing time: 5 s). The thickness of the sample was controlled by the number of deposition cycles. Moreover, the SURMOF-SURMOF heterojunction was formed by firstly growing the 20 cycles of Zn-perylene SURMOF and on top of it 20 more cycles of Zn (II) metalloporphyrin SURMOF was added to make heterojunctions. Moreover, the formation of heterojunction which is described in the literature.
Triplet-triplet annihilation upconversion (TTA UC) setup
First of all, 40 mg/ml PMMA (poly methyl (methacrylate) was prepared in the acetonitrile solution. Then as prepared MOF thin film material consisting of FTO/Quartz Glass-Zn-perylene SURMOF+Zn-porphyrin SURMOF were immersed into the well mixed acetonitrile solution of PMMA which was degassed with N2 for half an hour. The heterostructure was characterized for triplet triplet annihilation upconversion using laser light source.
Results and Discussions
图 3 显示了 Zn-苝 SURMOF、Zn-卟啉 SURMOF 和 Zn-苝-Zn-卟啉异质结的紫外-可见 (UV-vis) 光谱的比较分析。单独的 Zn-苝 SURMOF 的 UV-vis 光谱范围为 358 nm 至 470nm(棕色),与游离苝二羧酸[11]溶液进行比较,表明 MOF 薄膜样品发生蓝移。Zn-卟啉的 UV-vis 在 440nm 处显示一个 Sorret 带,在 530 nm 至 614 nm 之间显示两个 Q 带。 Zn(II)四苯基卟啉分子显示出两个 Q 带,这与自由基卟啉产生四个 Q 带不同,因为锌+2离子与卟啉分子的配位改变了前者分子的对称性。Zn-苝 SURMOF 和 Zn-卟啉 SURMOF 异质结构的组合紫外可见光与图 3(红色)所示的两种 MOF 薄膜的所有带重叠。SURMOF 异质结构中所有带的合并对于有效吸收绿光并将其转化为蓝光非常重要。
结论和意义:基于 MOF 薄膜的智能和混合材料可用于增强能量转换三重态三重态湮灭上转换。所研究的混合材料可用于未来的能量转换装置。观点是,可以用高度结晶的 MOF 薄膜制造原型染料敏化太阳能电池装置。此外,已经证明,通过克服更长的距离可以显着增强光电流,最终可能克服 Shockley-Queisserlimit。