索引于
  • 打开 J 门
  • Genamics 期刊搜索
  • 学术钥匙
  • 期刊目录
  • 中国知网(CNKI)
  • 乌尔里希的期刊目录
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • 期刊摘要索引目录
  • OCLC-WorldCat
  • 普布隆斯
  • 日内瓦医学教育与研究基金会
  • 欧洲酒吧
  • 谷歌学术
分享此页面
期刊传单
Flyer image

抽象的

Targeted Transgenic RNAi Knockdown of Cell Fate Determinants Induces Neoplastic Tumor Growth and Metastasis in a Drosophila Transplantation Model of Neural Stem Cell Derived Cancer

Anne-Sophie Laurenson, Nidhi Saini, Yanrui Jiang and Heinrich Reichert

Genetic models such as Drosophila have sophisticated transgenic and molecular genetic tools available to investigate proliferation control in normal and tumorigenic neural stem cells. In this report, we adapted a targeted transgenic RNAi knockdown approach based on the Gal4/UAS expression system to the study of neoplastic tumor formation and metastatic growth in the Drosophila brain tissue transplantation model. Transgenic RNAi driven knockdown of numb, brain tumor (brat) and prospero (pros) in all neuroblasts (type I and type II) resulted in a high incidence of neoplastic tumor formation after transplantation that was comparable to that of loss-of-function mutations in these cell fate determinants. RNAi knockdown of numb and brat specifically restricted to type II neuroblast lineages also resulted in tumor formation after transplantation. A marked temperature dependence of tumor formation after transplantation was documented and quantified for RNAi-induced knockdown of numb, brat and pros. An in vivo assay for micrometastasis formation in ovarioles revealed significant metastatic potential of transplanted overproliferating brain tissue induced by RNAi knockdown of these cell fate determinants. These findings establish the foundation for RNAi-based investigations of the mechanisms which underlie the proliferation, invasion and metastastic potential of neural stem cell induced tumors in the Drosophila model.