索引于
  • 打开 J 门
  • Genamics 期刊搜索
  • 学术钥匙
  • 期刊目录
  • 中国知网(CNKI)
  • 乌尔里希的期刊目录
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • 期刊摘要索引目录
  • OCLC-WorldCat
  • 普布隆斯
  • 日内瓦医学教育与研究基金会
  • 欧洲酒吧
  • 谷歌学术
分享此页面
期刊传单
Flyer image

抽象的

Transcriptional Regulation of Human NANOG by Alternate Promoters in Embryonic Stem Cells

Satyabrata Das, Snehalata Jena, Eun-Mi Kim, Nicholas Zavazava and Dana N. Levasseur

Introduction: The potential of pluripotent stem cells to be used for cell therapy depends on a comprehensive understanding of the molecular mechanisms underlying their unique ability to specify cells of all germ layers while undergoing unlimited self-renewal. Alternative splicing and alternate promoter selection contribute to this mechanism by increasing the number of transcripts generated from a single gene locus and thus enabling expression of novel protein variants which may differ in their biological role. The homeodomain-containing transcription factor NANOG plays a critical role in maintaining the pluripotency of Embryonic Stem Cells (ESC). Therefore, a thorough understanding of the transcriptional regulation of the NANOG locus in ESCs is necessary.

Methods:
Regulatory footprints and transcription levels were identified for NANOG in human embryonic stem cells from data obtained using high-throughput sequencing methodologies. Quantitative real-time PCR following reverse transcription of RNA extracted human ESCs was used to validate the expression of transcripts from a region that extends upstream of the annotated NANOG transcriptional start. Promoter identification and characterization was performed using promoter reporter and electrophoretic mobility shift assays.

Results:
Transcriptionally active chromatin marking and transcription factor binding site enrichment were
observed at a region upstream of the known transcriptional start site in NANOG. Expression of novel transcripts from this transcriptionally active region confirmed the existence of NANOG alternative splicing in human ESCs. We identified an alternate NANOG promoter of significant strength at this upstream region. We also discovered that NANOG autoregulates its expression by binding to its proximal downstream promoter.

Conclusion:
Our study reveals novel transcript expression from NANOG in human ESCs, indicating that
alternative splicing increases the diversity of transcripts originating from the NANOG locus and that these transcripts are expressed by an alternate promoter. Alternative splicing and alternate promoter usage collaborate to regulate NANOG, enabling its function in the maintenance of ESCs.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证