索引于
  • 打开 J 门
  • Genamics 期刊搜索
  • 学术钥匙
  • 期刊目录
  • 研究圣经
  • 中国知网(CNKI)
  • 西马戈
  • 乌尔里希的期刊目录
  • 电子期刊图书馆
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-WorldCat
  • SWB 在线目录
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
  • 米亚尔
  • 科学索引服务 (SIS)
  • 欧洲酒吧
  • 谷歌学术
分享此页面
期刊传单
Flyer image

抽象的

Advances in Viable Ice-free Cryopreservation of Heart Valves

Kelvin G.M. Brockbank*, Zhenzhen Chen, Elizabeth D. Greene and Lia H. Campbell

Investigation of heart valve cryopreservation has been employed as a model for development of new methods of tissue preservation based upon vitrification and nanowarming using Fe nanoparticles. Cryoprotectant cytotoxicity can be reduced by performing the last cryoprotectant/nanoparticle exposure step below zero degrees centigrade at -10C. Tissue viability outcomes can be improved by supplementation of cryoprotectant formulations with disaccharides and nanowarming can rewarm such complex tissues with retention of cell viability from storage temperatures below -135ºC to -25ºC in 80-100 seconds. It is anticipated that ice-free tissue cryopreservation methods for tissues up to 50 mLs can be developed that do not require the use of nanowarming, since we are already close to achieving this with heart valves at 30 mL volumes. However, at larger volumes nanowarming will likely continue to be the best warming method for retention of tissue cell viability. Further studies to optimize cryopreservation of cardiac muscle, the somewhat fibrous muscle band at the base of heart valves, and pulmonary and aortic arteries need to be performed since it is clear that different heart valve components vary in their preservation requirements. It is anticipated that other complex tissues may also have components with different cryopreservation requirements including nanowarming.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证