索引于
  • 打开 J 门
  • Genamics 期刊搜索
  • 学术钥匙
  • 期刊目录
  • 引用因子
  • 乌尔里希的期刊目录
  • 访问全球在线农业研究 (AGORA)
  • 电子期刊图书馆
  • 国际农业与生物科学中心 (CABI)
  • 参考搜索
  • 研究期刊索引目录 (DRJI)
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-WorldCat
  • 学者指导
  • SWB 在线目录
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
  • 日内瓦医学教育与研究基金会
  • 欧洲酒吧
  • 谷歌学术
分享此页面
期刊传单
Flyer image

抽象的

Amplification, Cloning and In silico Prediction of Full Length Elicitin Gene from Phytophthora capsici, the Causal Agent of Foot Rot Disease of Black Pepper

Vijesh Kumar IP, Reena N, Anandaraj M, Eapen SJ, Johnson GK and Vinitha KB

Elicitins are a family of small proteins secreted by Phytophthora, which induce leaf necrosis in infected plants. Here, we report the cloning of Elicitin gene from P. capsici, an Oomycete plant pathogen which causes significant damage to a broad range of host plants. Elicitin sequence was amplified using primers designed from the known Elicitin genes of other Phytophthora organisms based on their conserved motifs. The PCR amplified product size of 256 bp length and the BLAST analysis of the sequenced product showed perfect match with alpha-elicitin sequences of P. capsici. Subsequently, attempt was made to characterize the complete gene of elicitin from genome sequence information of P. capsici, by querying the amplified product against the genome. Local BLAST search against full genome identified entire coding sequence. Further sequence analysis identified promoter sequence, transcription start site, a leader signal sequence and a core elicitin domain, with a conserved 6 Cysteine residues. In addition, the three dimensional structure of capsicein was modelled, and the binding affinity of sterol and capsicein was studied using molecular docking. The developed model predicted strong binding affinity for Tyr 47.