索引于
  • 打开 J 门
  • Genamics 期刊搜索
  • 期刊目录
  • 中国知网(CNKI)
  • 电子期刊图书馆
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-WorldCat
  • SWB 在线目录
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
  • 米亚尔
  • 欧洲酒吧
  • 谷歌学术
分享此页面
期刊传单
Flyer image

抽象的

An Improved Film Thickness Model for Annular Flow Pressure Gradient Estimation in Vertical Gas Wells

Rahman MA*, Jacqueline Stevens, Jared Pardy and Danika Wheeler

The presence of liquids in natural gas wells increases the pressure loss within the well due to differences in density of the pressure head. In gas, well annular flow, liquid may be present in entrained droplets as well as in the liquid film. Several models have been proposed to predict liquid film thickness in pipes with vertical two-phase annular flow. Earlier models are based limited range of experimental data. The earlier models also require exhaustive iterative procedure to estimate liquid film thickness. On the other hand, the proposed modified film thickness model in this study was developed from a wide range of experimental data. The experimental data covers conditions of superficial liquid velocities ranging from 0.6 to 38.8 cm/s; superficial gas velocities ranging from 13.4 to 110.6 m/s; and diameters ranging from 12 to 51 mm. The proposed model is compared with the available experimental data in the literature. Model predictions are in good agreement with the available experimental data set. The modified film thickness model helps accurate estimation of pressure gradient in vertical annular flow, which in turn is beneficial to the natural gas production industry as it further develops the understanding of production mechanics.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证