索引于
  • 学术期刊数据库
  • Genamics 期刊搜索
  • 学术钥匙
  • 期刊目录
  • 中国知网(CNKI)
  • 西马戈
  • 访问全球在线农业研究 (AGORA)
  • 电子期刊图书馆
  • 参考搜索
  • 研究期刊索引目录 (DRJI)
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-WorldCat
  • SWB 在线目录
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
  • 米亚尔
  • 大学教育资助委员会
  • 日内瓦医学教育与研究基金会
  • 欧洲酒吧
  • 谷歌学术
分享此页面
期刊传单
Flyer image

抽象的

Application of Real-Time PCR to Identify Residual Bio-Decontamination of Confined Environments after Hydrogen Peroxide Vapor Treatment: Preliminary Results

Michele Pazienza, Maria Serena Britti, Mariachiara Carestia, Orlando Cenciarelli, Fabrizio D'Amico, Andrea Malizia, Carlo Bellecci, Pasquale Gaudio, Antonio Gucciardino, Mariarosa Bellino, Corrado Lancia, Annalaura Tamburrini and Roberto Fiorito

This study was conducted to assess the effectiveness of Hydrogen Peroxide Vapor (HPV) to remove biological contamination in a confined environment and to evaluate real-time PCR assay as a technique for the evaluation of the decontamination efficiency. Decontamination after the dispersion of biological aerosol is a main issue from a civilian, public health and military perspective. Despite the effectiveness of aggressive substances, eco-friendly but still efficient methods for decontamination are a relevant demand and Hydrogen Peroxide Vapor (HPV) is among the most recent and promising technologies in this field. Another related issue is: when an environment can be considered fully decontaminated? The answer clearly depends on the objectives of the decontamination and this will affect the choice of the methodology. Furthermore, classical microbiological and molecular biology techniques are commonly used to identify biological contamination and residual contamination, but many of them are time consuming and require advanced training for the operators who perform the analysis. This may represent a bottleneck, especially when a quick response to an emergency is needed (i.e. during an unconventional event like CBRNe ones). In this work, a combination of commercially available equipment for detection, identification and decontamination, was evaluated in partnership between the Italian Army, the Department of Industrial Engineering and the School of Medicine and Surgery of the University of Rome “Tor Vergata”. The purpose of this work was to find a setup for equipment and methodologies for detection, identification and decontamination, to implement in case of biological events. Preliminary results show that, despite the death of the microorganisms, nucleic acids are not completely degraded by HPV treatment and, as a consequence, that real-time PCR may be the adequate, quick and easy method to verify the efficiency of bio decontamination when nucleic acid degradation represent the final objective.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证