索引于
  • 打开 J 门
  • Genamics 期刊搜索
  • 学术钥匙
  • 期刊目录
  • 研究圣经
  • 中国知网(CNKI)
  • 西马戈
  • 乌尔里希的期刊目录
  • 电子期刊图书馆
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-WorldCat
  • SWB 在线目录
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
  • 米亚尔
  • 科学索引服务 (SIS)
  • 欧洲酒吧
  • 谷歌学术
分享此页面
期刊传单
Flyer image

抽象的

Biosynthesis of Silver Nanoparticles from Morinda tinctoria Leaf Extract and their Larvicidal Activity against Aedes aegypti Linnaeus 1762

Ramesh Kumar K, Nattuthurai, Gopinath P and Mariappan T

Mosquitoes include the major vector population for the transmission of many diseases for global mortality and morbidity with increased resistance to common insecticides. Aedes aegypti vector of dengue is spread into many parts of the globe, a study intend to investigate the efficacy of the leaf extract of Morinda tinctoria and silver nanoparticles (AgNps) synthesized using M. tinctoria against the third instar larvae of Ae. aegypti. AgNps were synthesized from leaf extract of M. tinctoria and its effects against 3rd instar larvae of Ae. aegypti were evaluated in the laboratory. The produced nanoparticles were subjected to different analysis include UV-Vis spectroscopy, Atomic Force Microscopy (AFM) and Fourier Transform Infrared Radiation (FTIR) spectroscopy. Both The leaf extract and the synthesized AgNps were tested against the 3rd instar larvae of Ae. aegypti and the recorded 50% lethal concentration (LC50) were 11.716 ppm and 3.631 ppm respectively. The results recorded from UV-Vis spectroscopy, AFM and FTIR Spectroscopy support the biosynthesis and characterization of AgNps. The results suggested that the leaf extract of M. tinctoria and synthesis of AgNps have the potential to be used as an ideal eco-friendly approach towards the control of Ae. aegypti in the field.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证