索引于
  • 打开 J 门
  • Genamics 期刊搜索
  • 学术钥匙
  • 期刊目录
  • 引用因子
  • 乌尔里希的期刊目录
  • 访问全球在线农业研究 (AGORA)
  • 电子期刊图书馆
  • 国际农业与生物科学中心 (CABI)
  • 参考搜索
  • 研究期刊索引目录 (DRJI)
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-WorldCat
  • 学者指导
  • SWB 在线目录
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
  • 日内瓦医学教育与研究基金会
  • 欧洲酒吧
  • 谷歌学术
分享此页面
期刊传单
Flyer image

抽象的

Biotrophic Fungi Infection and Plant Defense Mechanism

Solomon Abera Gebrie

Biotrophic pathogens derive nutrients from living cells by maintaining host viability. This host Maintenance sustain through highly specialized structural and biochemical relations. For valuable virulence activity biotrophic fungi have: highly developed infection structures; limited secretory activity, carbohydrate rich and protein-containing interfacial layers; long-term suppression of host defense; haustoria that used for nutrient absorption and metabolism. Plant defenses biotrophic fungal pathogen by penetration resistance and program cell death (PCD). Plant strengthens cell wall and membrane to halt spore germination and prevent the formation of the haustorium by Penetration resistance. The second resistance mechanism applied inside the penetrated epidermal cell that terminates nutrient supply to fungi for further development by induction of invaded program cell death. Plant innate immune responses occur through two basic interconnected forms: pathogen-associated molecular patterns (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI) to activate defense signal molecules. However, Biotrophic fungi have several mechanisms to defend their effectors from plant receptor molecules. Once the fungal effector passes plant defense mechanism the plant will not resist. Subsequently the plant reduces production of defense signaling molecule like salicylic acid. This review overviews recent knowledge of biotrophic fungi infection and plant defense strategies.