索引于
  • 打开 J 门
  • Genamics 期刊搜索
  • 学术钥匙
  • 期刊目录
  • 研究圣经
  • 乌尔里希的期刊目录
  • 访问全球在线农业研究 (AGORA)
  • 电子期刊图书馆
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-WorldCat
  • SWB 在线目录
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
  • 米亚尔
  • 日内瓦医学教育与研究基金会
  • 欧洲酒吧
  • 谷歌学术
分享此页面
期刊传单
Flyer image

抽象的

Characterization of Physico-chemical Properties and their Impact on Enzyme Activities in a Chronosequence Coal Mine Overburden Spoil as Biomarker of Reclamation Process

Jitesh Kumar Maharana and Amiya Kumar Patel

Mining activities lead to land degradation and alter ecosystem functions. Monitoring land degradation status is essential to take appropriate and timely conservation measures. Soil genesis during early years of mine spoil reclamation is critical and may help to predict reclamation success. The microbial activity is significantly influenced by the physicochemical properties, and hence, the assessment of these changes is essential for soil management practices. In the present investigation, the physico-chemical characterization and the activities of six different enzymes (amylase, invertase, protease, urease, phosphatase and dehydrogenase) were periodically analyzed with respect to different coal mine overburden spoil in chronosequence over a period of 10 yr, and compared with the native forest soil, in order to assess their effectiveness in reclaiming mine overburden spoil. Comparative analysis suggested that there was gradual increase in enzyme activities from a nutrient deficient situation (fresh mine spoil) to an enriched soil (native forest soil). Besides, the variation in enzyme activities was significantly attributable to differences in physico-chemical properties. Stepwise multiple regression analysis was performed in order to determine the contribution of different physico-chemical properties influencing the variability in enzyme activities. Further, principal component analysis was able to discriminate six coal mine overburden spoils and native forest soil into independent clusters on the basis of their physico-chemical properties and enzyme activities. The study clearly revealed that the change in microbial indices in terms of enzyme activities were more responsive and correlated very well with the extent of land degradation, and therefore, can serve as biomarker for reclamation studies.