索引于
  • 打开 J 门
  • Genamics 期刊搜索
  • 学术钥匙
  • 期刊目录
  • 引用因子
  • 乌尔里希的期刊目录
  • 访问全球在线农业研究 (AGORA)
  • 电子期刊图书馆
  • 国际农业与生物科学中心 (CABI)
  • 参考搜索
  • 研究期刊索引目录 (DRJI)
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-WorldCat
  • 学者指导
  • SWB 在线目录
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
  • 日内瓦医学教育与研究基金会
  • 欧洲酒吧
  • 谷歌学术
分享此页面
期刊传单
Flyer image

抽象的

Characterization of Tomato-associated Rhizobacteria Recovered from Various Tomato-growing Sites in Tunisia

Nada Ouhaibi-Ben Abdeljalil, Jessica Vallance, Jonathan Gerbore, Emilie Bruez, Guilherme Martins, Patrice Rey and Mejda Daami- Remadi

In the present study, a total of 200 rhizobacterial isolates were obtained from rhizosphere of healthy tomato plants grown in fields with a history of severe soilborne diseases and mainly crown and root rots. Screened their capacity to suppress in vitro growth of Sclerotinia sclerotiorum and Rhizoctonia solani, 69 and 57 isolates out of the 200 tested were shown able to inhibit significantly the mycelial growth of target pathogens by 11-62% relative to control. The 25 most effective isolates, leading to suppression of both fungi by more than 45% over control, were selected and subjected to morphological, biochemical, molecular, and metabolic characterizations. This collection of tomato-associated rhizobacteria exhibited a great morphological and biochemical diversity. Sequencing of 16S rRNA and rpoB genes led to the identification of four genera namely Bacillus, Chryseobacterium, Enterobacter, and Klebsiella. The most frequent species were B. amyloliquefaciens, B. thuringiensis, B. megaterium, B. subtilis, E. cloacae, C. jejuense, and K. pneumoniae. Screening for their plant growth-promoting properties, 20 isolates were shown able to produce siderophore, 18 had solubilized phosphate, and 19 were capable to synthesize indole-3- acetic acid (IAA). PCR amplification of lipopeptide biosynthetic genes revealed the presence of genes encoding fengycin A and bacillomycin D biosynthesis in 18 and 16 isolates, respectively. Metabolic characterization performed using Biolog™ Ecoplates indicated that tomato-associated rhizobacteria displayed a large metabolic activity and they were able to use a wide range of carbon sources with the increase of the incubation duration. Based on their metabolic profiles, these rhizobacterial isolates were grouped into eight major clusters generated at the different sampling times (24, 48 and 120 h of incubation). Average well-color development (AWCD) values were found to be positively correlated with the Shannon diversity index.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证