索引于
  • 打开 J 门
  • Genamics 期刊搜索
  • 学术钥匙
  • 期刊目录
  • 引用因子
  • 乌尔里希的期刊目录
  • 访问全球在线农业研究 (AGORA)
  • 电子期刊图书馆
  • 国际农业与生物科学中心 (CABI)
  • 参考搜索
  • 研究期刊索引目录 (DRJI)
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-WorldCat
  • 学者指导
  • SWB 在线目录
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
  • 日内瓦医学教育与研究基金会
  • 欧洲酒吧
  • 谷歌学术
分享此页面
期刊传单
Flyer image

抽象的

Differential Effects of Viral Coat Protein on Induction of Hypersensitive Response and Systemic Movement of Tobacco Mosaic Virus and Tobacco Mild Green Mosaic Virus in Nicotiana megalosiphon

Tony Wahlroos and Petri Susi

Tobacco mosaic virus (TMV) and Tobacco mild green mosaic virus (TMGMV) are both known to induce hypersensitive response (HR) local lesions in Nicotiana megalosiphon, a hybrid plant from a cross between N. suaveolens and N. fragrans, but only TMV is capable of systemic movement. Therefore, the determinants of induction of hypersensitive response and systemic movement of TMV and TMGMV in N. megalosiphon were further analyzed. HR was shown to be independent of the temperature indicating that the resistance responses are different from N gene responses induced in tobacco (N. tabacum cv. Xanthi-nc.) to TMV. Comparison of lesion growth between wild-type and transgenic tobacco plants encoding salicylate hydroxylase (nahG) indicated that TMV spread similarly in N. megalosiphon and Xanthi-nc./nahG plants. In addition, exogenous application of SA did not prevent systemic movement of TMV. Coat protein-deficient TMV failed to induce HR and move systemically in N. megalosiphon indicating that CP is the inducer of HR and determinant for systemic movement. However, single epidermal cells expressing TMV-CP did not undergo cell death suggesting that formation of HR cell death requires viral movement out of the initially infected epidermal cells or the presence of intact virus particles. Furthermore, comparison of different TMV strains, including virus vector carrying the CP of TMGMV-U5 in place of TMV-CP, showed no differences in the induction of HR and timing of systemic virus movement suggesting that CP is not the determinant for differential invasion of TMV and TMGMV.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证