抽象的

Disclosure of the Oscillations in Kinetics of the Reactor Pressure Vessel Steel Damage At Fast Neutron Intensity Decreasing

Krasikov E

Fast neutron intensity influence on reactor materials radiation damage is a critically important question in the problem of the correct use of the accelerated irradiation tests data for substantiation of the materials workability in real irradiation conditions that is low neutron intensity. Investigations of the fast neutron intensity (flux) influence on radiation damage and experimental data scattering reveal the existence of non-monotonous sections in kinetics of the reactor pressure vessels (RPV) steel damage. Discovery of the oscillations as indicator of the self -organization processes presence give reasons for new ways searching on reactor pressure vessel (RPV) steel radiation stability increasing and attempt of the self-restoring metal elaboration. Revealing of the wavelike process in the form of non monotonous parts of the kinetics of radiation embrittlement testifies that periodic transformation of the structure take place. This fact actualizes the problem of more precise definition of the RPV materials radiation embrittlement mechanisms and gives reasons for search of the ways to manage the radiation stability (Nano structuring and so on to stimulate the radiation defects annihilation), development of the means for creating of more stableness selfrecovering smart materials.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证