索引于
  • 学术期刊数据库
  • Genamics 期刊搜索
  • 学术钥匙
  • 期刊目录
  • 中国知网(CNKI)
  • 西马戈
  • 访问全球在线农业研究 (AGORA)
  • 电子期刊图书馆
  • 参考搜索
  • 研究期刊索引目录 (DRJI)
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-WorldCat
  • SWB 在线目录
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
  • 米亚尔
  • 大学教育资助委员会
  • 日内瓦医学教育与研究基金会
  • 欧洲酒吧
  • 谷歌学术
分享此页面
期刊传单
Flyer image

抽象的

Effective Antimicrobial Coatings Containing Silver-Based Nanoclays and Zinc Pyrithione

Mercedes Monte-Serrano, Patricia Fernandez-Saiz, Rafael M Ortí-Lucas and Barbara Hernando

Increased antibiotic resistance in human pathogens leads to the development of new preventive measures. The introduction of antimicrobial materials and surfaces provides an alternative tool for controlling harmful microorganisms. This article is focused on a study regarding the potential role of two new antimicrobial surface coatings in the control of infection spread. The method applied was to compare the antimicrobial activity of BactiBlock®-treated coatings respect to untreated coatings, which were used as a control, following international standards. The antibacterial activity of two antimicrobial polymer-based coatings containing silver-based antimicrobial layered silicate additive (BactiBlock® 635 A1 and BactiBlock® 655 A0) was tested according to JIS Z 2801 against S. aureus, MRSA, VRE, K. pneumoniae, P. aeruginosa, A. baumannii and E. coli. BactiBlock® 635 A1 also contains 0.25% of zinc pyrithione (ZnP). The antifungal activity was tested according to ISO 846 against A. niger. The two coatings presented a strong antibacterial broad-spectrum activity (R ≥ 2, p<0.01). The coating with ZnP also showed strong antifungal activity, since no fungi growth was detected on the treated surface after 4 weeks. Nevertheless, these findings support the potential of these polymer-based coatings as a tool that would help to prevent the colonization of inert surfaces by harmful microorganisms and protect patients and consumers who are exposed daily.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证