索引于
  • 打开 J 门
  • Genamics 期刊搜索
  • 乌尔里希的期刊目录
  • 参考搜索
  • 研究期刊索引目录 (DRJI)
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-WorldCat
  • 普罗奎斯特传票
  • 学者指导
  • 普布隆斯
  • 日内瓦医学教育与研究基金会
  • 欧洲酒吧
  • 谷歌学术
分享此页面
期刊传单
Flyer image

抽象的

Evaluation of Step Resistance in Multilayered Ceramic-Supported Pd-Based Membranes for Hydrogen Purification in the Presence of Concentration Polarisation

Caravella A and Sun Y

In this work, a systematic approach is used to quantify the single-step influence in composite Pd-based membranes on hydrogen permeation in the presence of concentration polarisation. To perform this study, an already developed permeation model is applied to a membrane supported on a five-layered asymmetric porous support. The results are presented in terms of both single-layer influence (calculated using an expression involving the permeation limiting fluxes) and the here introduced Support Resistance Coefficient, SRC, which is a coefficient measuring quantitatively the extent of the driving force in the entire support, analogously to what done for the definition of the Concentration Polarisation Coefficient, CPC. Analysing the membrane behaviour in different conditions of temperature, total feed pressure and Pd-layer thickness, it is eventually shows that, the presence of polarization determine a decreasing effect of the porous support in the considered configuration, i.e., with the selective layer placed on the high-pressure side and the support placed on the permeation one. This conclusion indicates that, for sufficiently thin metal layers, the hydrogen permeation is mostly influenced by concentration polarisation and, thus, the fluid dynamic conditions in the upstream side become a crucial parameter to optimise.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证