索引于
  • 学术期刊数据库
  • Genamics 期刊搜索
  • 学术钥匙
  • 期刊目录
  • 中国知网(CNKI)
  • 西马戈
  • 访问全球在线农业研究 (AGORA)
  • 电子期刊图书馆
  • 参考搜索
  • 研究期刊索引目录 (DRJI)
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-WorldCat
  • SWB 在线目录
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
  • 米亚尔
  • 大学教育资助委员会
  • 日内瓦医学教育与研究基金会
  • 欧洲酒吧
  • 谷歌学术
分享此页面
期刊传单
Flyer image

抽象的

Genes that are Affected in High Hydrostatic Pressure Treatments in a Listeria Monocytogenes Scott A ctsR Deletion Mutant

Yanhong Liu, Lihan Huang, Rolf D, Joerger and Nereus W. Gunther IV

Listeria monocytogenes is a food-borne pathogen of significant threat to public health. High Hydrostatic Pressure (HHP) treatment can be used to control L. monocytogenes in food. The CtsR (class three stress gene repressor) protein negatively regulates the expression of class III heat shock genes. In a previous study, a spontaneous ctsR L. monocytogenes deletion mutant 2-1 that was able to survive under HHP treatment was identified; however, there is only limited information about the mechanisms of survival and adaptation of this mutant in response to high pressure. Microarray technology was used to monitor the gene expression profiles of ctsR mutant 2-1 under pressure treatments (450 Mpa, 3min). Some of the gene expression changes determined by microarray assays were confirmed by real-time RT-PCR analyses. Compared to non-pressure-treated ctsR mutant 2-1, 14 genes were induced (> 2-fold increase) in the ctsR deletion mutant whereas 219 genes were inhibited (< -2-fold decrease) by pressure treatments. The induced genes included genes encoding proteins involved in synthesis of purines, pyrimidines, nucleosides, and nucleotides, transport and binding, transcription, cell membrane, DNA and energy metabolism, protein synthesis, and unknown functions. The inhibited genes included genes encoding proteins for transport and binding, cell envelope, transcription, amino acid biosynthesis, regulatory functions, cellular processes and central intermediary metabolism. The information concerning L. monocytogenes survival under HHP at the molecular level may contribute to improved HHP treatments for food processing.