索引于
  • 打开 J 门
  • Genamics 期刊搜索
  • 乌尔里希的期刊目录
  • 参考搜索
  • 研究期刊索引目录 (DRJI)
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-WorldCat
  • 普罗奎斯特传票
  • 学者指导
  • 普布隆斯
  • 日内瓦医学教育与研究基金会
  • 欧洲酒吧
  • 谷歌学术
分享此页面
期刊传单
Flyer image

抽象的

Integrated Ultrafiltration Membranes and Chemical Coagulation for Treatment of Baker’s Yeast Wastewater

Nouri Alavijeh H, Sadeghi M, Rajaeieh M, Moheb A, Sadani M and Ismail AF

An integrated system ultrafiltration membrane-coagulation has been employed for removal of chemical oxygen demand (COD) and turbidity from baker's yeast effluents. Fouling in the membrane is a common problem; chemical coagulation has been used as a pre-treatment method to mitigate fouling. Poly aluminum chloride (PACl), aluminum sulfate and lime had been used as coagulants. The results indicated that PACl exhibited higher removal efficiency than other coagulants. Two-stage coagulation and combination of coagulants were also investigated. The removal efficiency of COD and turbidity were achieved 68% and 81% by two-stage coagulation by PACl-lime, respectively. The effects of operating conditions on the ultrafiltration process for two types of hollow fiber membranes polyvinylidene fluoride (PVDF) and polypropylene (PP) on permeate flow rate, turbidity and COD removal of wastewater were further investigated. The results showed that by increasing the feed pressure, flow rate and feed temperature the permeate flow rate increased and the removal efficiency decreased. Under optimum conditions, PVDF membrane showed higher performance but compromised the flux compared to PP membrane.