索引于
  • 打开 J 门
  • Genamics 期刊搜索
  • 引用因子
  • 宇宙IF
  • 西马戈
  • 乌尔里希的期刊目录
  • 电子期刊图书馆
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • 期刊摘要索引目录
  • OCLC-WorldCat
  • 普罗奎斯特传票
  • 学者指导
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
  • 日内瓦医学教育与研究基金会
  • 谷歌学术
分享此页面
期刊传单
Flyer image

抽象的

Maintenance of Endothelial Cell Function in Liquid Based Antithrombotic Surface Coating

Hunghao Chu, Jiaqi Yao, Tuo Zhang, Mighten C Yip, Mousumi Dhara, James K Min, Simon Dunham and Bobak Mosadegh

Preventing occurrence of thrombosis and biofouling is essential for safety and efficacy of an intravascular device. The slippery liquid-infused porous surface (SLIPS) technology has promise to achieve this goal by forming a liquidrepellent layer on the surface of blood contacting materials. As adhesion of biomolecules is greatly inhibited, the SLIPS-treated surface reduces thrombosing and biofouling. This study demonstrates that in static conditions, cells can adhere to SLIPS-treated surfaces without significant decreases in attachment or migration, as compared to untreated polymer surfaces. Furthermore, next generation RNA sequencing reveals that the SLIPS treatment does not change gene expression in endothelial cells (ECs). Taken together, our findings suggest that SLIPS treatment to be a biocompatible strategy that could potentially protect a variety of medical devices without compromising the process of endothelialization.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证