索引于
  • 打开 J 门
  • Genamics 期刊搜索
  • 学术钥匙
  • 期刊目录
  • 中国知网(CNKI)
  • 乌尔里希的期刊目录
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • 期刊摘要索引目录
  • OCLC-WorldCat
  • 普布隆斯
  • 日内瓦医学教育与研究基金会
  • 欧洲酒吧
  • 谷歌学术
分享此页面
期刊传单
Flyer image

抽象的

Melatonin Induces Neuroprotection via System Xc Regulation in Neural Stem Cells

Melinda Clarke, Stephanie Crockett and Brian Sims

Hypoxic-brain injury is a major cause of neonatal morbidity and mortality. However, melatonin (N-acetyl-5- methoxytryptamine) has been identified as an indirect anti-oxidant and direct free radical scavenger that could possibly reduce the injurious effects of hypoxic-ischemic brain injury in neonatal infants. Hypoxia-ischemia leads to multiple consequences such as an increase in extracellular glutamate. Yet the many mechanisms involved in melatonin-induced neuroprotection are still under investigation. We have hypothesized that melatonin could induce neuroprotection by increasing levels of cystine glutamate exchanger (xCT), an amino acid transporter as shown in previous work in our laboratory. Mouse neural stem cells were used for all in vitro studies for western blot analysis. In dose-response studies, melatonin increases xCT expression by 2.43 ± 0.81, 3.58 ± 0.6, 3.21 ± 1.13, 3.30 ± 0.96 and 3.48 ± 0.30 (p < 0.01) folds at 1 nM, 10 nM, 100 nM, 1 µM and 10 µM concentrations respectively in neural stem cells. In time-course studies, melatonin increases xCT by 2.60 ± 0.97, 2.65 ± 0.27, 3.29 ± 0.40, and 3.57 ± 0.60 fold at 4 hours, 8 hours, 12 hours, and 24 hours. Melatonin increases cystine uptake. System Xc inhibition decreased cell viability. These results suggest that melatonin may induce neuroprotection by increasing xCT expression and activity.