索引于
  • 学术期刊数据库
  • 打开 J 门
  • Genamics 期刊搜索
  • 学术钥匙
  • 期刊目录
  • 中国知网(CNKI)
  • 引用因子
  • 西马戈
  • 乌尔里希的期刊目录
  • 电子期刊图书馆
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-WorldCat
  • SWB 在线目录
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
  • 米亚尔
  • 大学教育资助委员会
  • 日内瓦医学教育与研究基金会
  • 欧洲酒吧
  • 谷歌学术
分享此页面
期刊传单
Flyer image

抽象的

Molecular Electrophilicity Index - A Promising Descriptor for Predicting Toxicological Property

Shalini, Tandon H and Chakraborty T

To define a chemical reaction, interactions between electrophiles and nucleophiles have paramount importance. The charge transfer between electrophiles and nucleophiles provides an insight to explain chemical behaviour. This kind of behavior is generally explained in terms of reactivity descriptors viz. electrophilicity index, global hardness etc. In the present report, we have tried to define electrophilicity index in force model. Though a number of scientists have already defined electrophilicity index in energy unit, definition of electrophilicity index in force model is yet to be explored. We have computed atomic electrophilicity index in force unit invoking following ansatz:

ω=χ2/2η

Where electronegativity (χ) and global hardness (η) both are defined in force unit. Our atomic data exhibits all sine qua non of periodic properties. Secondly, an attempt has been made to establish electrophilicity equalization principle and to compute molecular electrophilicity index through geometric mean equalization principle. Finally, we have attempted to correlate experimental toxicological properties in terms of our computed molecular electrophilicity index. 252 organic molecules with diverse toxicity have been modeled invoking our molecular electrophilicity index. A close agreement between experimental toxicity and our predicted data transpires the efficacy of our model.