索引于
  • 打开 J 门
  • Genamics 期刊搜索
  • 学术钥匙
  • 期刊目录
  • 研究圣经
  • 中国知网(CNKI)
  • 西马戈
  • 乌尔里希的期刊目录
  • 电子期刊图书馆
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-WorldCat
  • SWB 在线目录
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
  • 米亚尔
  • 科学索引服务 (SIS)
  • 欧洲酒吧
  • 谷歌学术
分享此页面
期刊传单
Flyer image

抽象的

Nanothermite: Exploring the Revolutionary Potential of Advanced Energetic Materials

Dr. Gursel Murati

Nanothermite, also known as super-thermite, is an advanced composite material composed of a metal fuel and an oxidizer at the nanoscale level. It has gained significant attention in various fields, including military, aerospace, and energetic materials research, due to its exceptional energy release and enhanced reactivity compared to traditional thermite compositions. Nanothermite exhibits unique properties such as high energy density, rapid reaction kinetics, and tunable release profiles, making it a promising candidate for applications ranging from propulsion systems and explosives to pyrotechnics and nanoscale welding. This abstract provides an overview of nanothermite, including its synthesis methods, structural characteristics, reaction mechanisms, and potential applications. The current state of research, challenges, and future directions in nanothermite development and utilization are also discussed.

Nanothermite, also known as super-thermite or metastable intermolecular composite (MIC), is an advanced energetic material that has gained significant attention in recent years due to its unique properties and potential applications. This nanoscale composite material consists of a fuel and an oxidizer intimately mixed at the nanometer level, resulting in a highly reactive and energetic mixture. The high surface area and enhanced reactivity of nanothermite enable it to exhibit superior combustion characteristics compared to traditional thermite compositions. This paper provides an overview of nanothermite, its synthesis methods, properties, and current and potential applications in various fields, including aerospace, defense, and materials science. The aim of this review is to highlight the exciting advancements and future prospects of nanothermite research, which could have profound implications for energy storage, propulsion, and other technological advancements.