索引于
  • 打开 J 门
  • Genamics 期刊搜索
  • 引用因子
  • 宇宙IF
  • 西马戈
  • 乌尔里希的期刊目录
  • 电子期刊图书馆
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • 期刊摘要索引目录
  • OCLC-WorldCat
  • 普罗奎斯特传票
  • 学者指导
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
  • 日内瓦医学教育与研究基金会
  • 谷歌学术
分享此页面
期刊传单
Flyer image

抽象的

Neural Tissues Filter Electromagnetic Fields: Investigating Regional Processing of Induced Current in Ex vivo Brain Specimens

Nicolas Rouleau and Michael A Persinger

As has been demonstrated experimentally, the living brain responds to pulsatile electromagnetic fields. Our aim was to investigate the capacities of ex vivo neural tissue to process and filter induced current generated by naturally occurring and laboratory-controlled electromagnetic fields. Microvolt potentials within the chemically fixed postmortem brains were collected throughout the field exposures. During strong geomagnetic storms there was a significant increase in power spectra within the 7.5 Hz to 14 Hz range within the right but not the left parahippocampal gyrus compared to days with relatively quiet geomagnetic activity. This finding indicated that ambient electromagnetic fluctuations from natural sources were processed differentially as a function of subsections of the postmortem tissue. Exposing a whole, fixed human brain to two physiologically patterned magnetic fields that have been associated with powerful subjective experiences reported by hundreds of human volunteers in the laboratory setting elicited increased power within the 7.5 Hz to 20 Hz range. The effects required 10 to 20 s to emerge and were primarily represented within tissue subsections of the right amygdala and orbitofrontal gyri. Other fields such as simple sine-wave (20 Hz) patterns of comparable intensity (2 to 10 μT) did not elicit the same configuration of changes. The results indicate that neural tissues filter electromagnetic fields non-randomly.