索引于
  • 打开 J 门
  • Genamics 期刊搜索
  • 学术钥匙
  • 期刊目录
  • 全球影响因子 (GIF)
  • 中国知网(CNKI)
  • 乌尔里希的期刊目录
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-WorldCat
  • 普布隆斯
  • 日内瓦医学教育与研究基金会
  • 欧洲酒吧
  • 谷歌学术
分享此页面
期刊传单
Flyer image

抽象的

Omeprazole does not Potentiate Acute Oxygen Toxicity in Fetal Human Pulmonary Microvascular Endothelial Cells Exposed to Hyperoxia

Ananddeep Patel, Shaojie Zhang, Bhagavatula Moorthy and Binoy Shivanna

Hyperoxia contributes to the pathogenesis of broncho-pulmonary dysplasia (BPD), which is a developmental lung disease of premature infants that is characterized by an interruption of lung alveolar and pulmonary vascular development. Omeprazole (OM) is a proton pump inhibitor that is used to treat humans with gastric acid related disorders. Earlier we observed that OM-mediated aryl hydrocarbon receptor (AhR) activation attenuates acute hyperoxic lung injury in adult mice and oxygen toxicity in adult human lung cells. However, our later studies in newborn mice demonstrated that OM potentiates hyperoxia-induced developmental lung injury. Whether OM exerts a similar toxicity in primary human fetal lung cells is unknown. Hence, we tested the hypothesis that OM potentiates hyperoxia-induced cytotoxicity and ROS generation in the human fetal lung derived primary human pulmonary microvascular endothelial cells (HPMEC). OM activated AhR as evident by a dose-dependent increase in cytochrome P450 (CYP) 1A1 mRNA levels in OM-treated cells. Furthermore, OM at a concentration of 100 μM (OM 100) increased NADP(H) quinone oxidoreductase 1 (NQO1) expression. Surprisingly, hyperoxia decreased rather than increase the NQO1 protein levels in OM 100-treated cells. Exposure to hyperoxia increased cytotoxicity and hydrogen peroxide (H2O2) levels. Interestingly, OM 100-treated cells exposed to air had increased H2O2 levels. However, hyperoxia did not further augment H2O2 levels in OM 100-treated cells. Additionally, hyperoxia-mediated oxygen toxicity was similar in both vehicle- and OM-treated cells. These findings contradict our hypothesis and support the hypothesis that OM does not potentiate acute hyperoxic injury in HPMEC in vitro.