索引于
  • 打开 J 门
  • Genamics 期刊搜索
  • 乌尔里希的期刊目录
  • 参考搜索
  • 研究期刊索引目录 (DRJI)
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-WorldCat
  • 普罗奎斯特传票
  • 学者指导
  • 普布隆斯
  • 日内瓦医学教育与研究基金会
  • 欧洲酒吧
  • 谷歌学术
分享此页面
期刊传单
Flyer image

抽象的

Oxygen Transport Membranes and their Role in CO2 Capture and Syngas Production

Muhammad Riaz* and Muhammad Abdullah Butt

Membrane technology for gas separation has seen remarkable improvements in the last 20 years, particularly in the area of air separation for a cost-effective production of highly pure oxygen gas. It is rapidly paving way for alternate route to orthodox separation processes like cryogenic distillation. Solid-state electrochemical cells based on oxygen-ion conduction permit high temperature selective transport of O2 in the form of ionic flux. Hence these systems can act as filters for molecular oxygen either for generation or separation of oxygen gas. The solar thermochemical conversion of CO2 and H2O into syngas is usually carried out at a high temperature of above 1500°C in repeated heating−cooling cycles with the help of durable metal oxide catalysts. Oxygen Transport Membranes (OTMs) are high density ceramic membranes which display mixed conductivity of oxygen ions and electrons and a two-phase mixed metal oxide OTM could thermo-chemically convert CO2 and H2O to syngas in a single step with an H2/CO ratio of 2:1; thus offering an alternative route for syngas production. OTMs also propose a favourable technology for oxy-fuel and CO2 capture processes for gas and coal based power plants. Latest progresses in the field of ceramic membrane for oxygen separation from air at high temperatures vis-à-vis numerous materials and the prospect of ceramic-based membranes for the same are reviewed

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证