索引于
  • 在线访问环境研究 (OARE)
  • 打开 J 门
  • Genamics 期刊搜索
  • 期刊目录
  • 西马戈
  • 乌尔里希的期刊目录
  • 访问全球在线农业研究 (AGORA)
  • 电子期刊图书馆
  • 国际农业与生物科学中心 (CABI)
  • 参考搜索
  • 研究期刊索引目录 (DRJI)
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-WorldCat
  • 学者指导
  • SWB 在线目录
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
  • 米亚尔
  • 大学教育资助委员会
  • 欧洲酒吧
  • 谷歌学术
分享此页面
期刊传单
Flyer image

抽象的

Performance of Zero Water Discharge (ZWD) System with Nitrifying Bacteria and Microalgae Chaetoceros calcitrans Components in Super Intensive White Shrimp (Litopenaeus vannamei) Culture

Suantika G *,Lumbantoruan G ,Muhammad H ,Azizah FFN ,Aditiawati P

This research was aimed to study the performance of Zero Water Discharge (ZWD) by using nitrifying bacteria and microalgae Chaetoceros calcitrans in super intensive white shrimp (Litopenaeus vannamei) culture. The study consists of three consecutive steps: (1) activating and cultivating of nitrifying bacteria and microalgae C. calcitrans, (2) conditioning of zero water discharge system, and (3) using ZWD during shrimp culture along with control (a conventional system in which the water was renewed every four weeks and without the addition of nitrifying bacteria and C. calcitrans). Based on water quality parameters, low and stable NH4 + (0.07–0.69 mg/L), NO2 - (0–3.2 mg/L), NO3 - (1.04–4.29 mg/L) were obtained in both systems during culture period. Higher feed amount of 1178.28 g in ZWD system compared to the conventional one contributed to a same level of NH4+ and NO2 - level during 90 days culture period. At the end of the period, higher culture performance in terms of total weight (923.38 ± 42.15 g), mean body weight (8.24 ± 0.84 g), survival rate (90.82 ± 2.5%), specific growth rate (7.7 ± 0.11%) and feed conversion ratio (1.27 ± 0.29) was obtained in ZWD, while in control the figures were significantly different: total weight (160.48 ± 6.62 g), mean body weight (5.45 ± 0.28 g), survival rate (27.22 ± 2.09%), specific growth rate (7.24 ± 0.05%), and feed conversion ratio (4.10 ± 0.66). Based on this research, Zero Water Discharge system was able to maintain a stable and an acceptable water quality for shrimp culture. Furthermore, it resulted in better shrimp growth, higher survival rate, as well as lower FCR in high shrimp density.