索引于
  • 打开 J 门
  • Genamics 期刊搜索
  • 学术钥匙
  • 期刊目录
  • 研究圣经
  • 中国知网(CNKI)
  • 西马戈
  • 乌尔里希的期刊目录
  • 电子期刊图书馆
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-WorldCat
  • SWB 在线目录
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
  • 米亚尔
  • 科学索引服务 (SIS)
  • 欧洲酒吧
  • 谷歌学术
分享此页面
期刊传单
Flyer image

抽象的

pH-controlled Release System for Curcumin based on Functionalized Dendritic Mesoporous Silica Nanoparticles

Khaled EA AbouAitah, Farghali AA, Anna Swiderska-Sroda, Witold Lojkowski, Abdel-Fattah M Razin and Khedr MH

Mesoporous silica materials are promising drug delivery systems, especially in case of poorly water-soluble drugs. Curcumin (Cur) has proven effective for several pharmacological activities including anti-inflammatory, antioxidant, antimicropeal, hepatoprotective, and anticancer activities. In the present work two types of mesoporous silica nanoparticles were evaluated as a Cur carrier for controlled release of this anticancer natural pro-drug: MCM-41 (Two Dimensional) and KCC-1 (Three Dimensional), both functionalized with aminopropyl groups. KCC-NH2 and MCM-NH2 contained a similar amount of Cur (24.5% and 23.9%, respectively). In vitro experiments have shown that both materials effectively release Cur and the cumulative release was enhanced for low acidity (pH=2.5). At low acidic pH (2.5), the KCC-1 sample released higher amount (up to 19%) of curcumin compared to MCM-41 (14%). Thus it is possible to achieve controlled, long-term and effective pH-stimulated release of curcumin from aminefunctionalized mesoporous silica nanoparticles. This finding opens the way for their application for controlled curcumin delivery in cancer disease because of the acidic tumor environment, increase its stability and lead to an increase of the Cur bioavailability. Moreover, the KCC-1 three dimensional mesoporous silica seems to be a more promising nanocarrier compared to the commonly used MCM-41 material.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证