索引于
  • 学术期刊数据库
  • Genamics 期刊搜索
  • 学术钥匙
  • 期刊目录
  • 中国知网(CNKI)
  • 西马戈
  • 访问全球在线农业研究 (AGORA)
  • 电子期刊图书馆
  • 参考搜索
  • 研究期刊索引目录 (DRJI)
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-WorldCat
  • SWB 在线目录
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
  • 米亚尔
  • 大学教育资助委员会
  • 日内瓦医学教育与研究基金会
  • 欧洲酒吧
  • 谷歌学术
分享此页面
期刊传单
Flyer image

抽象的

Polyhydroxyalkanoate Synthesis by Recombinant Escherichia coli JM109 Expressing PHA Biosynthesis Genes from Comamonas sp. EB172

Lian-Ngit Yee, Tabassum Mumtaz, Mitra Mohammadi, Lai-Yee Phang, Yoshito Ando, Abdul Rahim Raha, Kumar Sudesh, Hidayah Ariffin, Mohd Ali Hassan and Mohd Rafein Zakaria

Recombinant Escherichia coli JM109 harbouring the polyhydroxyalkanoate (PHA) biosynthesis gene (phaCABco) of Comamonas sp. EB172, an acid tolerant microbe, was examined for the production of PHAs from various carbon sources. The study demonstrated that the recombinant E. coli JM109 had the potential to utilize both sugar- and acid-based carbon sources, for the biosynthesis of both poly(3-hydroxybutyrate) P(3HB) and poly(3- hydroxybutyrate-co-3-hydroxyvalerate) P(3HB-co-3HV) copolymers. In the shake flask experiments, the strain was capable of producing P (3HB-co-3HV) copolymer from mixed organic acids, and higher productivities were obtained using glucose compared to mixed acids. However, PHA accumulation was found to be similar, regardless of the carbon source used. Nitrogen supplementation in the medium was found to improve the cell dry weight, but negatively affected the 3HV formation in copolymer production. Maximum 3HV monomer (3 mol%) was obtained with C/N 42.1, using mixed acids as the carbon source. In the 2L bioreactor, the productivity and yield based on substrate utilization coefficient were found to be 0.16 g PHA/(L.h) and 0.41 g PHA/g substrate under C/N around 75, using 20 g/L glucose and 0.5 g/L ammonium sulphate, respectively. The polymer produced by the recombinant strain had molecular weight in the range of 8.5 x 105 to 1.4 x 106 Da. Overall, the ability of the recombinant E. coli JM109 to utilize both glucose and mixed acids, has widened its substrate selection for fermentation, including the opportunity to use renewable biomass.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证