索引于
  • 学术期刊数据库
  • 打开 J 门
  • Genamics 期刊搜索
  • 期刊目录
  • 研究圣经
  • 乌尔里希的期刊目录
  • 电子期刊图书馆
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-WorldCat
  • 学者指导
  • SWB 在线目录
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
  • 米亚尔
  • 日内瓦医学教育与研究基金会
  • 欧洲酒吧
  • 谷歌学术
分享此页面
期刊传单
Flyer image

抽象的

Quick Reliable Exploration of the PDB Universe Seeks a New Template Search Algorithm

Sunil Nahata and Ashish Runthala

Near-native protein structure prediction through Template Based Modelling (TBM) has been a major realistic goal of structural biology for several years. The TBM algorithms require the best-set of templates for a target protein sequence to maximally cover it and construct its correct topology. However, the accuracy of such prediction algorithms suffers from the algorithmic and logical problems of our template search measures which fail to quickly screen reliable structures for a target sequence. In this study, we employ the culled PDB95 dataset of 41,967 templates to predict the CASP10 target T0752 models for assessing the efficiency of the usually employ search engines PSI-BLAST and HHPred. Our analysis presents a detailed study in order to open new vistas for improving the accuracy of TBM prediction methodologies. It reveals weaknesses of most popular template search measures and thereby briefly provides a significant insight into the qualities of a foreseen template search algorithm to illustrate the need for a more reliable template search algorithm.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证