索引于
  • 打开 J 门
  • Genamics 期刊搜索
  • 学术钥匙
  • 期刊目录
  • 研究圣经
  • 中国知网(CNKI)
  • 西马戈
  • 乌尔里希的期刊目录
  • 电子期刊图书馆
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-WorldCat
  • SWB 在线目录
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
  • 米亚尔
  • 科学索引服务 (SIS)
  • 欧洲酒吧
  • 谷歌学术
分享此页面
期刊传单
Flyer image

抽象的

Study of the Interaction of Citrate-capped Hollow Gold Nanospheres with Metal Ions

Miller A, Adams S, Zhang JZ and Lihua Wang

Understanding the interaction between metal nanostructures and common metal ions is essential for biomedical applications of metal nanostructures including imaging and therapy. A systemic study of the interaction of citratecapped hollow gold nanospheres (HGNs), a unique metal nanostructure that has demonstrated high efficiency for photothermal ablation (PTA) therapy of cancer cells, with common metal ions: Na+, Ca2+, Mg2+, Cu2+, Zn2+, and Al3+ was carried out with the goal to determine how these metal ions may affect the properties and thereby performance of HGNs in biomedical applications. Specifically, the study focuses on the issue of metal ion induced aggregation of HGNs since aggregation can strongly influence the optical and photothermal properties of the HGNs. The level of HGNs aggregation caused by interaction with metal ions was found to depend on the nature and concentration of the metal ions present in the solution as well as the properties of the HGNs. The larger the stability constant of the metal ion citrate complex (logK1) is, the stronger the interaction between the metal ions and the HGNs was found to be. Lower HGN concentrations and higher levels of dispersion were correlated to enhanced sensitivity of the HGNs towards metal ion induced aggregation. The results demonstrate that metal ions can strongly affect how nanostructures like HGNs can be used in biomedical applications including imaging and therapy.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证