索引于
  • 打开 J 门
  • Genamics 期刊搜索
  • 学术钥匙
  • 期刊目录
  • 研究圣经
  • 中国知网(CNKI)
  • 西马戈
  • 乌尔里希的期刊目录
  • 电子期刊图书馆
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-WorldCat
  • SWB 在线目录
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
  • 米亚尔
  • 科学索引服务 (SIS)
  • 欧洲酒吧
  • 谷歌学术
分享此页面
期刊传单
Flyer image

抽象的

Using Nano- and Micro-Titanium Dioxide (TiO2) in Concrete to Reduce Air Pollution

Hala N. Elia, Anindya Ghosh, Amin k. Akhnoukh and Zeid A. Nima

As a crucial element in construction, tunnels, roads, pavements, and more, concrete has become one of the most important materials in the world. At the same time, air pollution, particularly in crowded cities, is increasing, mainly due to industrial activity and transportation. Therefore, one possible approach to fighting pollution is the use of “smart” construction materials, particularly the incorporation of photocatalytically active nano- and micro structures into concrete. Incorporating titanium dioxide (TiO2) in roads and pavements could degrade and, as a result, reduce various pollutants under ultraviolet radiation. The TiO2-infused concrete would also maintain its optical characteristics for far longer than traditional concrete mix. This research presents an evaluation of nano- and micro-TiO2-incorporated concretion degradation of organic molecules, as assessed by the concrete’s ability to degrade Rhodamine B dye. We tested concrete blocks with different concentrations of nano- and micro-TiO2 in their structure, exposing them to sunlight for various periods of time (24,48,72, and 96 hrs). The percentage of nano- and micro-TiO2 used in this research was 3,6,9,12, and 15% of the cement composition. The results showed good degradation of the Rhodamine B dye by both nano- and micro-TiO2, demonstrating the potential of this approach towards smarted construction materials for environmental applications.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证